3 Existence of CR automorphisms on three dimensional CR manifolds of non-degenerate Levi form

Let M be a smooth manifold of dimension $2 n+1$.

Definition $3.1(H(M), J)$ is a CR-structure (of hypersurface type) if H is a $2 n$-dimensional sub-bundle of $T M$ and $J: H \rightarrow H$ satisfies $J^{2}=-i d$.

The map J extends to a complex linear map of $\mathbb{C} \otimes H$ to itself and we obtain the decomposition $\mathbb{C} \otimes H=H_{1,0} \oplus H_{0,1}$ with $H_{1,0}$ as its i eigenspace and $H_{0,1}$ as its $-i$ eigenspace. A CR-structure $(H(M), J)$ is called integrable if $[Z, \tilde{Z}] \in H_{1,0}$ for any local sections Z and \tilde{Z} of $H_{1,0}$. A manifold with an integrable CR-structure is called a CR manifold.

Now let M be a CR-manifold and $\left\{Z_{1}, \ldots, Z_{n}\right\}$ be a basis for $H_{1,0}$, near some point x. Let U be a smooth real vector field that is transversal to H. Then $\left\{Z_{1}, \ldots, Z_{n}, \overline{Z_{1}}, \ldots, \overline{Z_{n}}\right\}$ is a basis for $\mathbb{C} \otimes H$ near x. For each $i, j=1, \ldots, n$, let

$$
\left[Z_{i}, \overline{Z_{j}}\right]=\sqrt{-1} g_{i j} U \quad \bmod \quad\left\{Z_{1}, \ldots, Z_{n}, \overline{Z_{1}}, \ldots, \overline{Z_{n}}\right\}
$$

Then the matrix $\left(g_{i j}\right)$ is hermitian, which we call the Levi form. M is called a nondegenerate CR-manifold if the matrix $\left(g_{i j}\right)$ is nonsingular.

A smooth map f of M into another CR manifold \tilde{M} is called a CR mapping if
(i) $d f$ maps $H(M)$ to $H(\tilde{M})$
(ii) $d f \circ J=J \circ d f$.

We reformulate the definition of CR structures in terms of forms as follows. Given $(H(M), J)$, we choose a real nonzero form $\theta \in H^{\perp}$ and then find $\theta^{1}, \cdots, \theta^{n}$ so that $\theta, \theta^{1}, \cdots, \theta^{n}$ span $H_{0,1}^{\perp}$ linearly. Thus we have $\theta \wedge \theta^{1} \wedge$ $\cdots \wedge \theta^{n} \wedge \overline{\theta^{1}} \wedge \cdots \wedge \overline{\theta^{n}} \neq 0$. Integrability can be expressed as $d \theta, d \theta^{i} \equiv 0$
$\bmod \theta, \theta^{1}, \ldots, \theta^{n}$.
Conversely, given forms $\theta, \theta^{1}, \cdots, \theta^{n}$ on M where

$$
\begin{aligned}
& \theta \text { is real, } \\
& \theta \wedge \theta^{1} \wedge \cdots \wedge \theta^{n} \wedge \overline{\theta^{1}} \wedge \cdots \wedge \overline{\theta^{n}} \neq 0
\end{aligned}
$$

we can define the CR structure on M by setting

$$
\begin{aligned}
& H=\theta^{\perp} \\
& H_{0,1}=\left\{\theta, \theta^{1}, \ldots, \theta^{n}\right\}^{\perp} .
\end{aligned}
$$

Tanaka-Chern-Moser theory $[\mathbf{T 1}],[\mathbf{C M}]$ asserts that there exists a complete system of local invariants for non-degenerate CR structures. In particular, when $n=1$ we have the following.

Theorem 3.2 ($\mathbf{p 1 4 0}$ of [Ja], [BS]) Let M be a nondegenerate CR manifold of dimension 3. Then there exists an eight-dimensional bundle Y over M and there is a completely determined set of 1-forms $\omega, \omega^{1}, \phi_{1}^{1}, \phi^{1}, \psi$ on Y, of which ω, ψ are real and which satisfy the following :

$$
\begin{align*}
d \omega & =i \omega^{1} \overline{\omega^{1}}+\omega\left(\phi_{1}^{1}+\overline{\phi_{1}^{1}}\right), \\
d \omega^{1} & =\omega^{1} \phi_{1}^{1}+\omega \phi^{1}, \\
d \phi^{1} & =\frac{1}{2} \omega^{1} \psi+\overline{\phi_{1}^{1}} \phi^{1}+Q \overline{\omega^{1}} \omega, \tag{3.1}\\
d \phi_{1}^{1} & =i \omega^{1} \phi^{1}+2 i \omega^{1} \overline{\phi^{1}}+\frac{1}{2} \omega \psi, \\
d \psi & =2 i \phi^{1} \overline{\phi^{1}}+\left(\phi_{1}^{1}+\overline{\phi_{1}^{1}}\right) \psi+\left(R \omega^{1}+\overline{R \omega^{1}}\right) \omega .
\end{align*}
$$

Futhermore, if M is another nondegenerate $C R$ manifold with correspong notions $\tilde{Y}, \tilde{\omega}, \tilde{\omega}^{1}, \tilde{\phi}_{1}^{1}, \tilde{\phi}^{1}, \tilde{\psi}$, then there exists a CR diffeomorphism $f: M \rightarrow$ \tilde{M} if only if there exists a diffeomorphism $F: Y \rightarrow \tilde{Y}$ such that
(i) the diagram commutes :

(ii) Pull back of the forms, $\tilde{\omega}, \tilde{\omega}^{1}, \tilde{\phi}_{1}^{1}, \tilde{\phi}^{1}, \tilde{\psi}$ by F are exactly those forms, $\omega, \omega^{1}, \phi_{1}^{1}, \phi^{1}, \psi$, respectively.

We choose 1-forms ω and ω^{1} that define the CR structure of M^{3} and that satisfy $d \omega=i \omega^{1} \overline{\omega^{1}}+\omega \phi$. This frame $\left\{\omega, \omega^{1}, \phi\right\}$ determines a section $\sigma: M \rightarrow$ Y and we have

$$
\begin{align*}
d \omega & =i \omega^{1} \overline{\omega^{1}}+\omega \phi \quad \phi=\phi_{1}^{1}+\overline{\phi_{1}^{1}} \\
d \omega^{1} & =\omega^{1} \phi_{1}^{1}+\omega \phi^{1} \\
d \phi^{1} & =\frac{1}{2} \omega^{1} \psi+\overline{\phi_{1}^{1}} \phi^{1}+q \overline{\omega^{1}} \omega \tag{3.2}\\
d \phi_{1}^{1} & =i \omega^{1} \phi^{1}+2 i \omega^{1} \overline{\phi^{1}}+\frac{1}{2} \omega \psi \\
d \psi & =2 i \phi^{1} \overline{\phi^{1}}+\left(\phi_{1}^{1}+\overline{\phi_{1}^{1}}\right) \psi+\left(r \omega^{1}+\bar{r} \overline{\omega^{1}}\right) \omega
\end{align*}
$$

where $q=\sigma^{*} Q, r=\sigma^{*} R$.
Differentiating $d \phi^{1}, d \psi$ in (3.2), we have

$$
\begin{aligned}
0 & =d^{2} \phi^{1} \\
& =\left(d q-q \phi_{1}^{1}-3 q \overline{\phi_{1}^{1}}-\frac{1}{2} \bar{r} \omega^{1}\right) \overline{\omega^{1}} \omega \\
0 & =d^{2} \psi \\
& =\left(d r-3 r \phi_{1}^{1}-2 r \overline{\phi_{1}^{1}}+2 i \bar{q} \phi^{1}\right) \omega^{1} \omega+\left(d \bar{r}-3 \bar{r} \overline{\phi_{1}^{1}}-2 \bar{r} \phi_{1}^{1}+2 i r \overline{\phi^{1}}\right) \overline{\omega^{1}} \omega .
\end{aligned}
$$

Thus we put

$$
\begin{align*}
d q & =q_{0} \omega+\frac{1}{2} \bar{r} \omega^{1}+\overline{q_{1}} \overline{\omega^{1}}+q \phi_{1}^{1}+3 q \overline{\phi_{1}^{1}} \tag{3.3}\\
d r & =r_{0} \omega+r_{1} \omega^{1}+\tilde{r}_{1} \overline{\omega^{1}}+3 r \phi_{1}^{1}+2 r \overline{\phi_{1}^{1}}+2 i \bar{q} \phi^{1} \tag{3.4}
\end{align*}
$$

for some $q_{0}, q_{1}, r_{0}, r_{1}$ and \tilde{r}_{1} with \tilde{r}_{1} real.

Remark.

1. The function $q(x)$ on M is not an invariant but a relative invariant of M : A different choice of ω and ω^{1} gives a different function $\tilde{q}(x)$, but $q(x)$ and $\tilde{q}(x)$ are either both zero or both nonzero.
2. From (3.3), we know that $q \equiv 0$ implies $r \equiv 0$. In this case, M^{3} is CR equivalent to the real hyperquadric Q^{3}.

Let M and \tilde{M} be real hypersurfaces in \mathbb{C}^{n}.
A pseudo-conformal mapping of M into \tilde{M} is a smooth mapping that can be extended to a biholomorphism of a neighborhood of M into a neighborhood of \tilde{M}. A pseudo-conformal mapping is obviously a CR diffeomorphism. If a hypersurface is connected and non-degenerate at a point, then the group of all pseudo-conformal automorphisms $\operatorname{Aut}(M)$ is a Lie group of transformations with

$$
\operatorname{dim} A u t(M) \leq n^{2}+2 n,
$$

and the equality holds if and only if M is the real hyperquadric(See [T1] and [Ya]).

Definition 3.3 A smooth real vector field X on M is an infinitesimal $C R$ automorphism if $L_{X} V \in H$ and $L_{X} J V=J\left(L_{X} V\right)$ for any section V of H.

Proposition 3.4 Let X be a smooth vector field on a $C R$ manifold (M, H, J). Then the followings are equivalent:
(i) X is an infinitesimal $C R$-automorphism,
(ii) $L_{X} \bar{Z} \in H_{0,1}$ for any section \bar{Z} of $H_{0,1}$,
(iii) $L_{X} \omega \in H_{0,1}^{\perp}$ for any section ω of $H_{0,1}^{\perp}$.

Proof.

- $(i) \Rightarrow(i i) J\left(L_{X} \bar{Z}\right)=L_{X} J \bar{Z}=-i L_{X} \bar{Z}, \forall \bar{Z} \in H_{0,1}$.
- $(i i) \Rightarrow(i)$ Note that $J(V+i J V)=-i(V+i J V)$ for any section V of H i.e. $\quad V+i J V \in H_{0,1}$. Then (ii) implies $J\left(L_{X}(V+i J V)\right)=$ $-i L_{X}(V+i J V)$ and we get $L_{X} J V=J\left(L_{X} V\right)$ by comparing the real part of both sides.
- (ii) $\Leftrightarrow($ (iii) is easily checked.

Let X be an infinitesimal CR-automorphism on M^{3} with $\omega(X)=\eta$ and
$\omega^{1}(X)=\xi$.
From the property of Lie derivative and (3.2), we have

$$
\begin{aligned}
L_{X} \omega & =d(X\lrcorner \omega)+X\lrcorner d \omega \\
& =d \eta+X\lrcorner\left(i \omega^{1} \overline{\omega^{1}}+\omega \phi\right) \\
& =d \eta+i \xi \overline{\omega^{1}}-i \bar{\xi} \omega^{1}+\eta \phi-\phi(X) \omega \\
L_{X} \omega^{1} & \left.\left.=d(X\lrcorner \omega^{1}\right)+X\right\lrcorner d \omega^{1} \\
& =d \xi+X\lrcorner\left(\omega^{1} \phi_{1}^{1}+\omega \phi^{1}\right) \\
& =d \xi+\xi \phi_{1}^{1}-\phi_{1}^{1}(X) \omega^{1}+\eta \phi^{1}-\phi^{1}(X) \omega .
\end{aligned}
$$

By Proposition 3.4 we have

$$
\begin{align*}
d \eta & =a \omega+i \bar{\xi} \omega^{1}-i \xi \overline{\omega^{1}}-\eta \phi \tag{3.5}\\
d \xi & =b \omega+c \omega^{1}-\xi \phi_{1}^{1}-\eta \phi^{1} \tag{3.6}
\end{align*}
$$

for some functions a, b and c.
The exterior differentiations of (3.5) and (3.6) give respectively

$$
\begin{aligned}
0 & =d^{2} \eta \\
& =\left(d a-i \bar{b} \omega^{1}+i b \overline{\omega^{1}}+i \xi \overline{\phi^{1}}-i \bar{\xi} \phi^{1}+\eta \psi\right) \omega+i(a-c-\bar{c}) \omega^{1} \overline{\omega^{1}} \\
0 & =d^{2} \xi \\
& =\left(d b-\eta q \overline{\omega^{1}}-b \overline{\phi_{1}^{1}}+\bar{c} \phi^{1}+\frac{1}{2} \xi \psi\right) \omega+\left(d c-i b \overline{\omega^{1}}+i \bar{\xi} \phi^{1}+2 i \xi \overline{\xi \phi^{1}}+\frac{1}{2} \eta \psi\right) \omega^{1} .
\end{aligned}
$$

Thus we have

$$
\begin{align*}
a & =c+\bar{c} \tag{3.7}\\
d a & =f \omega+i \bar{b} \omega^{1}-i b \overline{\omega^{1}}+i \bar{\xi} \phi^{1}-i \xi \overline{\phi^{1}}-\eta \psi \tag{3.8}\\
d b & =g \omega+h \omega^{1}+\eta q \overline{\omega^{1}}+b \overline{\phi_{1}^{1}}-\bar{c} \phi^{1}-\frac{1}{2} \xi \psi \tag{3.9}\\
d c & =h \omega+l \omega^{1}+i b \overline{\omega^{1}}-i \bar{\xi} \phi^{1}-2 i \xi \overline{\xi \phi^{1}}-\frac{1}{2} \eta \psi \tag{3.10}
\end{align*}
$$

for some functions f, g, h and l.
From (3.7), (3.8) and (3.10), we get $l=2 i \bar{b}$ and $f=h+\bar{h}$.

Differentiating (3.10) we have

$$
\begin{aligned}
0= & d^{2} c \\
= & \left\{d h-2 i(\bar{g}+\xi \bar{q}) \omega^{1}-i(g+\bar{\xi} q) \overline{\omega^{1}}-\frac{1}{2} \eta\left(r \omega^{1}+\bar{r} \overline{\omega^{1}}\right)-h \phi-i \bar{b} \phi^{1}\right. \\
& \left.+i b \overline{\phi^{1}}+\frac{1}{2} a \psi\right\} \omega+2 i(h-\bar{h}) \omega^{1} \overline{\omega^{1}} .
\end{aligned}
$$

This gives $h=\bar{h}$, hence $g+\bar{\xi} q=0$, and

$$
d h=k \omega+\frac{1}{2} \eta\left(r \omega^{1}+\bar{r} \overline{\omega^{1}}\right)+h \phi+i \bar{b} \phi^{1}-i b \overline{\phi^{1}}-\frac{1}{2} a \psi
$$

for some function k.
Differentiating (3.9) we have

$$
\begin{aligned}
0 & =d^{2} b \\
& =\left(3 \bar{c} q+c q+\eta q_{0}+\frac{1}{2} \xi \bar{r}+\bar{\xi} \overline{q_{1}}\right) \omega \overline{\omega^{1}}+\left(k+\frac{1}{2} \xi r+\frac{1}{2} \bar{\xi} \bar{r}\right) \omega \omega^{1}
\end{aligned}
$$

which implies that $k=-\frac{1}{2} \xi r-\frac{1}{2} \bar{\xi} \bar{r}$.
Thus we obtain a complete system of order 3 for η and ξ, which can be expressed as

Now define 1-forms on the 11-dimensional manifold $\mathcal{S}:=M \times \mathbb{R} \times \mathbb{C}^{3} \times \mathbb{R}=$ $\{(x, \eta, \xi, b, c, h) \mid x \in M\}$ by

$$
\begin{align*}
\theta^{1} & =d \eta-a \omega-i \bar{\xi} \omega^{1}+i \xi \overline{\omega^{1}}+\eta \phi \\
\theta^{2} & =d \xi-b \omega-c \omega^{1}+\xi \phi_{1}^{1}+\eta \phi^{1} \\
\theta^{3} & =d b+\bar{\xi} q \omega-h \omega^{1}-\eta q \bar{\omega}^{1}-b \overline{\phi_{1}^{1}}+\bar{c} \phi^{1}+\frac{1}{2} \xi \psi \\
\theta^{4} & =d c-h \omega-2 i \bar{i} \omega^{1}-i b \overline{\omega^{1}}+i \bar{\xi} \phi^{1}+2 i \xi \overline{\phi^{1}}+\frac{1}{2} \eta \psi \\
\theta^{5} & =d h+\frac{1}{2}(\xi r+\bar{\xi} \bar{r}) \omega-\frac{1}{2} \eta\left(r \omega^{1}+\bar{r} \overline{\omega^{1}}\right)-h \phi-i \bar{b} \phi^{1}+i b \overline{\phi^{1}}+\frac{1}{2} a \psi . \tag{3.12}
\end{align*}
$$

We want to apply the Frobenius theorem to $\theta^{1}, \operatorname{Re} \theta^{i}, \operatorname{Im} \theta^{i}, \theta^{5}, \quad i=2,3,4$
From the previous calculation we have

$$
\begin{aligned}
d \theta^{1} & =0 \\
d \theta^{2} & =0 \\
d \theta^{3} & =-\left(3 \bar{c} q+c q+\eta q_{0}+\frac{1}{2} \xi \bar{r}+\bar{\xi} \overline{q_{1}}\right) \omega \overline{\omega^{1}} \\
d \theta^{4} & =0
\end{aligned}
$$

$\bmod \quad \theta^{1}, \theta^{i}, \overline{\theta^{i}}, \theta^{5}, \quad i=2,3,4$.
We have

$$
\begin{aligned}
d \theta^{5} \equiv & -\frac{1}{2}\left(\eta r_{0}+\xi r_{1}+\bar{\xi} \tilde{r}_{1}+(3 c+2 \bar{c}) r+2 i b \bar{q}\right) \omega \omega^{1} \\
& -\frac{1}{2}\left(\eta \overline{r_{0}}+\bar{\xi} \overline{r_{1}}+\xi \tilde{r}_{1}+(3 \bar{c}+2 c) \bar{r}-2 i \bar{b} q\right) \omega \overline{\omega^{1}}
\end{aligned}
$$

$\bmod \quad \theta^{1}, \theta^{i}, \overline{\theta^{i}}, \theta^{5}, \quad i=2,3,4$.

Thus we put

$$
\begin{aligned}
& T_{1}=3 \bar{c} q+c q+\eta q_{0}+\frac{1}{2} \xi \bar{r}+\bar{\xi} \overline{q_{1}} \\
& T_{2}=\eta r_{0}+\xi r_{1}+\bar{\xi} \tilde{r}_{1}+(3 c+2 \bar{c}) r+2 i b \bar{q}
\end{aligned}
$$

If $q \equiv 0$, we know that $r \equiv 0$ from the remark following Theorem 3.2 and hence $T_{1} \equiv T_{2} \equiv 0$. By the Frobenius theorem, there is a foliation of $M \times$ $\mathbb{R} \times \mathbb{C}^{3} \times \mathbb{R}$ by three dimensional integral manifolds, which gives the eightparameter family of solutions. If $q \neq 0$, we solve $T_{1}=T_{2}=0$ to get $b=b(x, \eta, \xi), c=c(x, \eta, \xi)$ and (3.11) is reduced to a complete system of order 1 :

$$
\left\{\begin{aligned}
d \eta & =(c(x, \eta, \xi)+\overline{c(x, \eta, \xi)}) \omega+i \bar{\xi} \omega^{1}-i \xi \overline{\omega^{1}}-\eta \phi, \\
d \xi & =b(x, \eta, \xi) \omega+c(x, \eta, \xi) \omega^{1}-\xi \phi_{1}^{1}-\eta \phi^{1}
\end{aligned}\right.
$$

We may keep analyzing this pfaffian system on $\mathcal{S}^{\prime}:=M \times \mathbb{R} \times \mathbb{C}$ by checking the Frobenius condition. If the system is integrable on \mathcal{S}^{\prime} in the sense of Frobenius there exits 3 parameter family of solutions. We summarize the above discussions of this section in the following

Theorem 3.5 Let M be a nondegenerate $C R$ manifold of dimension 3. Let q be the relative $C R$ invariant as in (3.2). Then
(i) If $q \equiv 0, M^{3}$ is $C R$ equivalent to the real hyperquadric Q^{3} and there exist eight-parameter family of infinitesimal $C R$ automorphisms.
(ii) If $q \neq 0$, we obtain a complete system of order 1 for infinitesimal $C R$ automorphisms :

$$
\left\{\begin{aligned}
d \eta & =(c(x, \eta, \xi)+\overline{c(x, \eta, \xi)}) \omega+i \bar{\xi} \omega^{1}-i \xi \overline{\omega^{1}}-\eta \phi \\
d \xi & =b(x, \eta, \xi) \omega+c(x, \eta, \xi) \omega^{1}-\xi \phi_{1}^{1}-\eta \phi^{1}
\end{aligned}\right.
$$

where b and c are functions on $M \times \mathbb{R} \times \mathbb{C}$ given by $T_{1}=T_{2}=0$. In particular, there are infinitesimal $C R$ automorphisms on M of at most three parameters.

As for the dimension of CR automorphism group of M we refer [Ja]. The second part of Theorem 3.5 can also be proved by using Theorem 2 and its corollary of [Ja].

References

[BBG] E. Berger, R. Bryant and P. Griffiths, The Gauss equations and rigidity of isometric embeddings, Duke Math. J. 50(1983), 803-892.
[Br] R. Bryant, Nine lectures on exterior differential systems, MSRI Lecture Note, 2002.
[BCGGG] R. Bryant, S. S. Chern, R. Gardner, H. Goldschmidt and P. Griffiths, Exterior differential systems, Springer-Verlag, Berlin, 1991.
[BS] D. Burns and S. Schnider, Real hypersurfaces in complex manifolds, Proc. Symp. Pure Math. Amer. Math. Soc. 30(1977), 141-168.
[CH] C.K. Cho and C.K. Han, Finiteness of infinitesimal deformations of CR mappings of CR manifolds of nondegenerate Levi form, J. Korean Math. Soc. 39(2002), 91-102.
[CM] S.S. Chern and J. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133(1974), 219-271.
[Han] C. K. Han, Equivalence problem and complete system of finite order, J. Korean Math. Soc. 37(2000), 225-243.
[Ja] H. Jacobowitz, An Introduction to CR structures, Amer. Math. Soc., Providence, 1990.
[Ko] S. Kobayashi, Transformation Groups in Differential Geometry, Springer-Verlag, New York, 1972.
[St] N. Stanton, Infinitesimal CR automorphisms of real hypersurfaces, Amer. J. Math. 118(1996), 209-233.
[Sv] A. Švec., On certain infinitesimal isometries of surfaces, Czechoslovak Math. J. 38(113)(1988), 473-478.
[T1] N. Tanaka, On the pseudo-conformal geometry of hypersurfaces of the space of n complex variables, J. Math. Soc. Japan 14(1962), 397-429.
[T2] N. Tanaka, On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections, Japanese J. Math. 2(1976), 131-190.
[Ya] K. Yamaguchi, Non-degenerate real hypersurfaces in complex manifolds admitting large groups of psudo-conformal transformations. I, Nagoya Math. J. 62(1976), 55-96.
[YY] K. Yamaguchi and T. Yatsui, Geometry of higher order differential equations of finite type associated with symmetric spaces, Hokkaido U. Preprint Series \#524, 2001.

